
Proton Key Transparency
Whitepaper

Thore Göbel (ETH Zurich),
Daniel Huigens (Proton)

2024-01-10

Contents

1 Introduction 3

2 Background 5
2.1 Keys at Proton . 5
2.2 Verifiable Random Functions . 5

3 Specification 8
3.1 Overview . 8
3.2 Labels: Email Addresses . 9
3.3 Values . 11
3.4 Epochs . 14
3.5 The Merkle Hash Tree . 15
3.6 Committing to the Tree Root . 19
3.7 Timestamps and Recentness . 21
3.8 Deletions . 23
3.9 Self Audit . 23
3.10 Promise Audit . 25
3.11 External Audit . 26
3.12 ProtonKT Subprotocols . 27

4 Analysis 38
4.1 Privacy Analysis . 38
4.2 Security Properties . 39
4.3 Adversary Model . 40
4.4 Security Analysis . 41

5 Future Work 46
5.1 Additional verification of Merkle Tree roots 46

5.1.1 Publishing to Blockchains . 46
5.1.2 Verifying SCT inclusion proofs . 46

5.2 Standardization . 47

Bibliography 48

1 Introduction

At Proton, we are always working to increase the security and trustworthiness of our
applications. We use end-to-end encryption to protect user data, and our applications
and cryptography libraries are open source1, such that anyone can review them, and
verify the security of our applications.

In order to work, our end-to-end encryption uses key pairs: a private key only
known to its owner, and a corresponding public key known to the general public.
When you compose an email, when you share a calendar, or when you share a pass-
word vault, you need the public key of the recipient. With the public key you can
encrypt the data you want to send. Once encrypted, only the owner can decrypt it
again, using the private key.

The Achilles heel of end-to-end encryption is getting the public key. To get it, the
Proton client app looks up the recipient’s username on a key server run by Proton,
and the key server returns the public key. The key server stores a database that maps
usernames to public keys.

A sophisticated attacker could try to compromise the key server, or try to otherwise
intercept the key lookup. The attacker could then launch a Man-in-the-Middle (MITM)
attack: it could modify the lookup to return a wrong public key, and use that to
intercept and read data before re-encrypting it with the correct public key. To prevent
this MITM attack, the client app needs to make sure that it gets the correct public key
of the recipient (instead of simply trusting the key server). But how can the client app
verify that the public key is correct?

So far, our solution to this problem was Address Verification2. It allows users to
manually verify each others’ public address keys out-of-band and pin them. Once
a contact’s key is pinned, Proton clients will warn the user when another, unverified
key is used by that contact. However, Address Verification is manual and only protects
users who enable it. It also requires users to have an out-of-band channel, which may
not be the case if you are an anonymous source emailing a journalist. Therefore, we
set out to find a solution that is automatic and protects all users.

Key Transparency (KT)3 offers a new approach to the problem of getting correct
public keys. It improves over Address Verification by automatically running in the
background and not requiring any user interaction. With KT, whenever a Proton
client looks up a key, e.g., when sending an email or when sharing a password vault,
it checks that the key it received from the key server is logged in the KT system.
Additionally, Proton clients monitor their own keys and check that only their real keys
are logged, i.e., no other, possibly malicious keys were logged in KT. If an unexpected
key is found, the client warns the user.

1https://proton.me/community/open-source
2https://proton.me/support/address-verification
3https://proton.me/support/key-transparency

3

https://proton.me/community/open-source
https://proton.me/support/address-verification
https://proton.me/support/key-transparency

KT ensures that MITM attacks at the address key level will always result in a
warning. In other words, Proton users no longer need to trust Proton’s key server
to serve correct public keys. With KT, users enjoy a similar level of security as with
Address Verification, but without having to manually compare key fingerprints.

It is important to note that the problem that KT solves (malicious or hacked key
servers returning wrong public keys) is not unique to Proton. It affects every end-
to-end encrypted service, no matter whether it is email, instant messaging, or file
sharing. For a long time, the only solution was manual out-of-band verification. In
2014, researchers proposed the first KT design called CONIKS [1]. This was followed
up by the later academic works of SEEMless [2], Parakeet [3], and others. Our Key
Transparency design (dubbed ProtonKT) is inspired by CONIKS and SEEMless. We
made some additions to support catch-all addresses, as well as disabling and deleting
accounts, among other things.

As the name suggests, Key Transparency (as a general concept) is inspired by
Certificate Transparency (CT)4. Both KT and CT make use of a Merkle hash tree to log
certificates and public keys respectively. In addition to this design similarity, ProtonKT
makes use of the existing CT ecosystem to bootstrap trust.

This whitepaper describes how the Proton Key Transparency (ProtonKT) protocol
works, including its architecture and its subprotocols. The whitepaper also provides
a privacy and a security analysis. We assume that the reader is familiar with basic
concepts such as hash functions, Merkle hash trees, and public key cryptography.

4https://certificate.transparency.dev

4

https://certificate.transparency.dev

2 Background

2.1 Keys at Proton

Proton uses a variety of asymmetric PGP keys across its products. Proton clients
automatically manage these keys on behalf of Proton users. The main types of keys
are:

• User keys (sometimes called account keys): User keys encrypt account-specific
data. For example, contacts are encrypted and signed with a user key. User keys
are local to a user, i.e., not known to or used by other Proton users.

• Address keys (sometimes called email encryption keys): Address keys are used for
sending end-to-end encrypted data to other users: sending email, sharing calen-
dars, sharing files on Drive, or sharing password vaults.

• Other keys: e.g., calendar keys to encrypt calendars or share keys and node keys to
encrypt files on Drive. These keys are part of key hierarchies that lead back to
an address key. For more information, see the Proton Calendar Security Model1

and the Proton Drive Security Model2.

Users can manage their user keys and their address keys in the web client (see Fig-
ure 2.1). For example, users with old Proton accounts that were created with RSA-2048
keys can generate new Curve25519 keys. Old keys are retained to allow decrypting
old data.

Address keys are central when sharing data in an end-to-end encrypted manner.
Address keys are used to send end-to-end encrypted data (preventing MITM), and to
verify signatures when receiving data (preventing impersonation). Thus the address
keys are the keys that are protected by KT. All other key types are not included in KT,
and do not need to.

Keys have flags. For example, when the user marks a key as “obsolete” or as
“compromised” in the web client, this is recorded in the key flags. These flags are also
included in and protected by KT.

2.2 Verifiable Random Functions

Since VRFs are not a common primitive, this section briefly introduces them. In KT,
VRFs will be important for privacy.

The output of a pseudorandom function fs should be indistinguishable from the out-
put of a truly random function. This means that – by design – without knowing the
PRF seed s one cannot distinguish whether fs was correctly computed.

1https://proton.me/blog/protoncalendar-security-model
2https://proton.me/blog/protondrive-security

5

https://proton.me/blog/protoncalendar-security-model
https://proton.me/blog/protondrive-security

Figure 2.1: Managing Address Keys (top) and User Keys (bottom)

A verifiable random function (VRF), introduced in 1999 [4], provides such a correct-
ness proof alongside the output value.

A more informal way to think about VRFs is in terms of hash functions: A plain
hash function is publicly computable and verifiable. A keyed hash function is privately
computable and privately verifiable. A VRF is privately computable and publicly
verifiable.

VRFs achieve this by having an asymmetric key pair (sk, pk). To evaluate the VRF,
one needs the secret key sk. (In practice this is useful if we want to force an adversary
to go through an oracle to evaluate the “hash” function, e.g. to apply access control or
rate limiting. A common example is preventing offline enumeration attacks of hash-
based data stores.) Given a VRF output and a proof, one can use the public key pk to
check that the output is correctly computed. (This is useful if we don’t trust the party
evaluating the VRF.)

Algorithms We follow the notation of RFC 9381 (an informational RFC from the
IRTF’s CFRG) [5], which defines a VRF as a set of algorithms:

β← hash(sk, α)

π ← prove(sk, α)

β/⊥ ← veri f y(pk, α, π)

where α is the input value, β is the output value, and π the proof. RFC 9381 also
defines another function proo f ToHash:

β← proo f ToHash(π) such that hash(sk, α) = proo f ToHash(prove(sk, α))

6

which allows it to specify proo f ToHash instead of hash. This also allows veri f y to
compute the hash β itself, which means that in practice the prover/evaluator (who
holds sk) only needs to output π.

Properties VRFs have the following security properties:

• Pseudorandomness: Knowing pk but not sk, an adversary can choose an input α
and gets the output β, but not its corresponding π. The adversary can only
distinguish β from random with a negligible advantage.

Note that β is distinguishable from random if you know π (verify the proof) or
sk (recompute β).

• Uniqueness: For a fixed pk, for all inputs α it is hard to find two different proofs
π1 ̸= π2 that correspond to different outputs β1 ̸= β2 In other words, each input
value α has a unique output value β. 3

• Collision Resistance: It is hard to find a pk, two different inputs α1 ̸= α2, and
proofs π1, π2, such that they correspond to the same outputs β1 = β2. In other
words, no two input values should collide on the output value.

Depending on the VRF construction, some security properties don’t hold if the key
pair is maliciously generated. In EC-based VRFs, clients can validate the key to detect
this. See section 7 of RFC 9381 [5].

3But it is admissable to have two different proofs π1 ̸= π2 for α that correspond to the same β.

7

3 Specification

This chapter specifies the ProtonKT security protocol. We begin by giving a high-level
overview. Next, we describe the protocol in more detail (but still informal): how labels
(email addresses) and values (public keys) in the key directory are defined, how the
Merkle tree is built, and how Self Audits and External Audits work. Finally, we give
a more formal specification of ProtonKT, stating the subprotocols and giving their
detailed steps as message sequence diagrams.

3.1 Overview

This section gives a high-level overview of how ProtonKT works. We begin by describ-
ing the different parts, before we finally look at the subprotocols in detail.

Label–Value Store/Dictionary At its core, a key server maintains a dictionary that
maps email addresses to public keys. We call this a map from labels (email addresses)
to values (public keys). We don’t use the term key–value store to avoid confusion
between dictionary keys and cryptographic keys.

Roles and Basic Functionality ProtonKT has the same roles as other KT protocols: a
server, some clients, and some auditors.

The server hosts the key directory. Clients can upload their own public key to the
server, and clients can query (look up) other clients’ public keys. Clients also regularly
audit their own keys and check that they are correct. The server responds to queries
with the requested public key, as well as an inclusion proof leading to a tree root
and a commitment to that tree root. External auditors check that the server correctly
constructs the tree and does not equivocate (present split-views). Clients have a trust
relationship with the auditors: they trust that at least one honest auditor is auditing
the tree.

Merkle Tree The key directory is a Merkle Hash Tree. Each leaf corresponds to a
(username, revision) pair. That is, whenever a user updates its key, a new leaf is
inserted. In ProtonKT, each user has a dedicated subtree: all its revisions belong to
the same subtree. Revision 0 is the left-most leaf of a user’s subtree, revision n is the
right-most leaf.

The ProtonKT server can also delete old values. External Auditors check that the
server only deletes revisions that have been superseded by a new revision more than
90 days ago. That is, the latest leaf is always retained. This allows the server to clean
up old values.

Root Hash Consistency via Commitments ProtonKT introduces a new approach
for committing to the root hash: it requests a web-PKI certificate that contains the

8

root hash (or more specifically, the hash chain of root hashes) from a CA (e.g. Let’s
Encrypt). The CA issues the certificate, and it will be logged in CT logs. Assuming
that CT logs are append-only and trusted, this allows ProtonKT to publicly commit to
the tree root.

Clients then verify the commitment to the root by verifying the certificate and the
SCTs inside it. Clients trust the SCTs as a promise of CT log inclusion, and they trust
that some External Auditor somewhere is scanning CT logs for equivocation.

Epochs The server publishes an updated tree at regular intervals, called epochs. It
collects all insertion requests, inserts them as a batch into the tree, requests the web-
PKI certificate for this new tree, and then announces this as a new epoch.

Alice Bob

BP

Server Auditori

CA + CT logs

µ

Upload new
pk,

Audit own pk.

Query
user

name

pk, root, co
mm,

inclu
sio

n proof

Trust

Audit tree

Request cert Audit logs

Figure 3.1: ProtonKT Overview

3.2 Labels: Email Addresses

Informally, the labels in the key directory are email addresses. However, there are
some subtleties. Consider the following use cases that make email addresses compli-
cated:

• Address normalization: Email addresses can have different formats that all map to
the same normalized address. For example, john.doe@proton.me, johndoe@proton.me,
and john.doe+alias@proton.me are all equivalent. Mail sent to any of these ad-
dresses will be delivered to the same inbox.

9

To solve this, we need to apply a set of normalization rules that are applied to
a label before it interacts with ProtonKT. The normalization rules are a public
system parameter that is defined in advance. This is important: otherwise the
server could give arbitrary and different rules to different clients. For example
consider the case where Bob wants to query for alice@proton.me. The server
could give Bob a rule to strip all vowels from the local part. Bob would then look
up the public key for lc@proton.me and send his email to alice@proton.me en-
crypted with the key for lc@proton.me. But when Alice verifies her key history,
the server returns only non-malicious rules.

Proton has two normalization rules for the local part (the domain part is not
modified): (1) First, if a plus (+) character is present, strip it and everything after
it. (2) Then strip all dashes (-), underscores (_), and dots (.).

• Multiple addresses: One user account can have multiple email addresses (each
with their own PGP key pair), with one being the primary address. This does
not affect Bob’s lookups of an address (since from Bob’s perspective it does not
matter which account controls an address).

Alice, however, needs to call run Self Audits for all of the addresses that are
associated with her account. If she doesn’t monitor an address, a malicious
server could insert a fake address into ProtonKT and re-encrypt all emails for
Alice towards her real key on-the-fly.

• Internal vs External vs Non-Proton Addresses: When a Proton client looks up an
email address, this can either either be a Proton or a Non-Proton Address, de-
pending on whether there exists a Proton account with this address. Proton
addresses are again split into Internal and External Addresses.

A Non-Proton Address is an email address belonging to a user who is not a Proton
customer (e.g. alice@example.com). An Internal Address is a Proton-managed
email address (bob@proton.me or custom domains). An External Address (e.g.
charlie@example.com) is an email address that is linked to a Proton account, but
whose email is not handled by Proton Mail.1

For Internal Addresses, the server should either return keys and an inclusion
proof, or no keys and an absence or obsolescence proof.

For External Addresses, the server may return email encryption keys that it
found in the Web Key Directory (WKD) [6] (since email is hosted elsewhere).
The server may also return data encryption keys, used e.g. for Proton Drive.
The former should have an absence proof in KT, and the latter should have an
inclusion proof.

For Non-Proton Addresses, the server may also return keys that it found in the
WKD. This way clients can automatically encrypt emails to it. These keys won’t
be in ProtonKT, thus KT should return an absence proof.

Clients should always verify the claims of the server against KT, independent of
the address type. KT proofs should not be skipped for Non-Proton Addresses.

Overall, this means that labels are typed.

• Custom domains: In Proton, users can bring their own domain and delegate email
handling to Proton. These are called custom domains. This means that Inter-
nal Addresses can have arbitrary domains, and not just @proton.me. The only

1This allows users to sign up for a Proton account with a non-Proton email address.

10

exception are domains from well-known email providers such as gmail.com or
outlook.com. These exceptional domains can be assumed to never be Internal
Addresses – but they can be External Addresses.

• Catch-all: Owners of custom domains can configure a so-called catch-all address.
The catch-all address of a domain receives all email that is sent to non-existent
addresses for this domain. For example, any email sent to nonexistent@example.com

will be delivered to the catch-all address admin@example.com. (This assumes that
the administrator of example.com has configured this redirection. If they haven’t,
the email will bounce.)

When a Proton client looks up nonexistent@example.com, it should get a key
back, so that it can still encrypt the email. This should be the same key as the
key for admin@example.com, so that the catch-all address can decrypt it.

Thus whenever a client looks up an address, the KT server returns two proofs:
(1) a proof for the queried address, and (2) a proof for the catch-all address. If
the first proof is an absence proof (or an obsolescence proof, see below) and the
second is an inclusion proof, then the client can deduce that it should use the
key for the catch-all address. If the domain owner has not configured a catch-all
address, the second proof is an absence proof.

ProtonKT uses @example.com as the label for the catch-all address, i.e. an @
followed by the domain name.

3.3 Values

ProtonKT maps labels (email addresses) to values (public keys). In this section, we
discuss how these values are structured in ProtonKT, and how these values are re-
turned upon querying.

When a client queries for a label, there are three possible outcomes: absence, in-
clusion, and obsolescence. Depending on the outcome, the returned value differs: For
absence, the value is empty. For inclusion, the value are public keys, represented by
a data structure called Signed Key List (SKL). For obsolescence, the value is a special
ObsolescenceToken. Let us now look at these values in detail.

3.3.1 Signed Key Lists

A Signed Key List (SKL) is a list of public key fingerprints signed by the primary key.
The SKL data structure looks as follows:

struct {

boolean primary;

uint64 flags;

string fingerprint; // hex-encoded SHA-1/SHA-256 hash of the public key

vector<string> SHA256Fingerprints; // fingerprint of the key

and of its subkeys, if any

} KeyListItem;

struct {

vector<KeyListItem> items;

} KeyList;

11

struct {

string data; // KeyList.to_json().to_string()

string signature; // Armored PGP signature over data

} SignedKeyList;

Each KeyListItem corresponds to one PGP key. It has a fingerprint, and possibly
a list of fingerprints of its subkeys. 2 It also has a primary bit and some flags. See
section 2.1 for an explanation of the flags. Exactly one KeyListItem should have the
primary bit set.

The SignedKeyList contains a PGP signature over a JSON-encoded list of KeyListItems.
This signature should be produced by the primary KeyListItem (but may be produced
by any of the KeyListItems). The signature ensures that the server cannot tamper with
the data field. (KT would make such tampering transparent. Historically the SKL data
structure is also used elsewhere by Proton, hence the signature.)

Note that while the SignedKeyList uses PGP features (fingerprints, signatures), this
data structure is specified by Proton, not by OpenPGP.

Finally note that the public keys themselves are not included in the SKL.data, only
their fingerprints. Clients need to query the public keys from the key server (like they
would without KT). Clients then use the SKL.data to verify that the returned public
keys are consistent with KT. In an abuse of notation, and for simplicity, we nevertheless
say that KT queries return “keys”, instead of “fingerprints”.

3.3.2 Disabled Addresses and Obsolescence Tokens

Email addresses can become disabled in different situations: If users delete their ac-
count, their email address is disabled so that it cannot be reused. To handle abuse,
Proton can disable user accounts and the associated email addresses. Businesses who
manage their organization on Proton can disable an email address, e.g. when an em-
ployee leaves.

In a first KT design, one would start by considering two cases either a label is
present and has a value (inclusion proof), or it is absent and has no value (absence
proof). Disabled addresses create a third use case: a label is present and had values in
the past, but now it should be “gone”.

Because of the append-only-ness property of KT, we cannot simply delete the label
to make it absent. 3 In addition, we want all server actions to be transparent, so the
fact that the server disabled an address should be logged. We also want to be able to
disable an address immediately in the next epoch.

Therefore we need to insert a new value for the same label (email address). For
example, we could insert an SKL without any keys, i.e. with an empty data field. With
this empty SKL in the tree, we can create an inclusion proof committing to this empty
set of keys.

However, an auditor with access to the tree can then easily recognize this empty
SKL.data value. For privacy, we want that an auditor cannot distinguish between

2In PGP, the fingerprint is the hash of the public keying material, either using SHA-256 or SHA-1,
depending on the version. Proton additionally adds SHA-256 hashes to mitigate against attacks on
SHA-1.

3A malicious server can of course reset a value to being absent. However, this should be flagged as a
protocol violation by an honest auditor or by a client doing a self-audit.

12

active and disabled addresses. Thus instead of an empty data field, we insert an
ObsolescenceToken. It is defined as:

ObsolescenceToken = UnixTime.now().asU64().toHex() || SecureRandom().getBytes(20).toHex()

We concatenate a timestamp of 64 bits / 16 hex characters with some randomness of
160 bits / 20 bytes / 40 hex characters to form a 56 hex character string.

The randomness makes it harder for an auditor to distinguish a present leaf (which
contains h(SKL.data)) from an obsolete leaf (which contains h(ObsolescenceToken), see
section 3.6). A malicious auditor can guess the timestamp based on the epoch id when
the obsolete leaf was inserted, but it would still need to brute-force the 160 random
bits.

The timestamp is included to commit the time at which the address was disabled.
While the server can set any time, it does immutably commit to it, and KT will ensure
that everyone sees a consistent view of the timestamp. The SKL also contains a (hid-
den) timestamp: the signature field has a timestamp, because the OpenPGP standard
includes timestamps in PGP signatures. Overall, the timestamp is an informational
feature (e.g. to show a time in the UI).

3.3.3 Query Outputs: Values for Absence, Inclusion, Obsolescence

In reality, when a client queries the server for a label, the server returns more than just
an SKL or an Obsolescence Token. It also returns additional metadata, for example
the revision and the epoch at which this value was inserted. In the REST-API, all the
metadata fields are included in the SKL struct for implementation convenience. That
is, a query will always return a SignedKeyListWithMeta struct. All its fields are null-
able, as indicated by the question mark “?”. Which fields must be present and which
are null depends on the outcome type (absence/inclusion/obsolescence).

struct {

string? data;

string? signature;

/* Metadata */

uint64? revision;

uint64? min_epoch_id;

uint64? max_epoch_id;

uint64? expected_min_epoch_id;

string? obsolescence_token;

} SignedKeyListWithMeta;

We can formalize this as follows: Querying a label (an email address) results
in a query outcome O = (τ, rev, val). The query outcome is the outcome type τ (ab-
sence/inclusion/obsolescence), the latest revision rev of the value, and the outcome
values val (e.g. pkA). For each type, the following values must be present in the SKL,
thus forming the val:

• valabs = ∅

• valincl = {data, minEpochId}

• valobs = {ObsolescenceToken, minEpochId}

13

For absence, the entire SKL is null (there is no value, so there is no latest revision). For
inclusion and obsolescence, we have for the other values:

• revision should be set.

• signature we could technically agree on, but it is not very useful: we don’t have
any keys, so we use KT to at least agree on some untrusted keys in data, and
then we would verify the signature using those untrusted keys. (The signature is
useful to the holder of the private keys. The fact that the signature exists proves
to them that they indeed requested this key to be inserted earlier.)

• maxEpochId for revision t is implied by the minEpochId of revision t + 1 (see
section 3.4). It is not used in the current protocol, but is still present as a helper
field from an earlier ProtonKT version.

• expectedMinEpochId is used for values that are not yet included in the tree; so
we cannot agree on it. If the server answers a query with a value that will only be
included in the next epoch, minEpochId is null and instead expectedMinEpochId
must be set.

In our security properties later, we will require that clients who query a label
always agree on the outcome O = (τ, rev, val).

3.4 Epochs

We divide time into epochs. Epochs are identified by their epoch id, a strictly increasing,
positive integer.

All key insertion and update requests are collected into batches, which are then
collectively inserted into the KT tree. When a batch is fully processed a new tree is
published, marking a new epoch.

This means that there is a gap between a client’s insertion request and the publish-
ing of a new epoch. Clients inserting/updating their keys use self-auditing to verify
that their insertion request is fulfilled in the next epoch.

To allow clients to immediately use new keys, the KT server may respond to queries
with the new key immediately, even if the next epoch is not yet published. In this
case, the server can not yet provide a tree inclusion proof. It returns the key anyway,
together with the expectedMinEpochId when the key will be included in the tree. The
querying client must store the received value locally and later audit that this value
was correctly inserted before or during expectedMinEpochId.

This still fulfills the transparency requirement: if the server fails to include the key,
the client has evidence of server misbehavior. (This is local evidence. That is, the client
cannot convince other clients of the server’s misbehavior. To fix that, the server would
need to sign the query response.)

Intervals Normally a ProtonKT epoch should be published every 4 hours. The max-
imum publishing interval is 72 hours; after that the server is considered to be misbe-
having.

14

Epoch IDs in the SKL The epoch IDs in the SKL-with-Metadata have the following
meaning:

• minEpochId: is the epoch in which the SKL was inserted into the tree. It can be
null if the SKL is not yet inserted.

minEpochId is committed into the tree via the leaf hash.

• maxEpochId: is the last epoch during which this SKL was the latest SKL in the
tree. If the SKL is not yet inserted, maxEpochId is null. If the SKL is inserted
and the latest one, maxEpochId is equal to the latest epoch id. (I.e. maxEpochId
changes every time a new epoch is published.) If the SKL is inserted and is
superseded by a newer SKL, maxEpochId is set to the id of the epoch just before
the insertion of the superseding SKL.

In other words, [minEpochId, maxEpochId] is the inclusive interval of the time
where an SKL was the latest one in the tree. 4

maxEpochId is not explicitly committed into the tree, but it is implicit from the
next higher revisions minEpochId (or, if the next higher revision is absent, it must
be equal to the latest epoch).

• expectedMinEpochId: is used by clients to locally store the epoch in which they
expect a fresh SKL to be included in KT. Once an SKL is included expectedMinEpochId
is always null.

This happens (1) when a client generates a new SKL for itself and uploads it for
insertion, and (2) if the server answers another client’s query with a new key that
is not yet included in KT (because the next epoch has not yet been issued).

In both cases, the server chooses a expectedMinEpochId. The client then locally
stores the SKL and uses expectedMinEpochId as a non-binding hint for when to
audit that the SKL was included.

expectedMinEpochId trivially cannot be committed into the tree.

3.5 The Merkle Hash Tree

In this section we describe the Merkle Hash Tree (MHT) used in ProtonKT. First we
define how ProtonKT constructs the tree, and what is hashed into it. Later we de-
fine the inclusion and absence proofs (for querying values), as well as the update proofs
(proving append-only-ness between trees). 5

3.5.1 Leaf indices

In ProtonKT, every (email address, revision) pair maps to a unique leaf in the tree.
Proton clients look at the value that is stored at this leaf to look up the public keys of
an email address at a given revision.

The index of a leaf is calculated by taking the VRF hash of the label and concate-
nating it with the revision.

idx = VRF.hash(sk, label) || rev
4Recall that there can be multiple SKLs in the tree, because new SKLs are always appended.
5Update proofs are called consistency proofs in CT, because they prove that the set of elements in two

trees are consistent. In KT we also have “consistency” in a second context: the consistency of the tree
root between different clients and/or auditors. To avoid confusion about which consistency we mean,
we use the term update proof instead.

15

ProtonKT instantiates VRF with ECVRF-EDWARDS25519-SHA512-TAI [5], which
has output size 512 bits. A leaf index in ProtonKT has 256 bits. The first 224 bits are
from the VRF hash (ignoring the remaining 512− 224 = 288 bits), the other 32 bits are
the revision. Hence the Merkle tree has a fixed depth of 256 levels. Each bit of the leaf
index (0/1) defines whether a left or a right branch is taken. Being a bit-string of 32
bits, revisions as integers go from 0 up to 232 − 1 (inclusive).

Note that each label (each email address) has a unique subtree. This subtree is
defined by the trailing index bits of the revision.

Also note that every label has a unique, non-colliding subtree. Uniqueness of VRFs
ensures that every label has exactly one VRF hash (and not two or more). Collision re-
sistance of VRFs ensures that no two labels map to the same VRF hash. More precisely,
it is hard for a poly-time adversary to find cases breaking these two properties.

For more details on VRFs, see RFC 9381 [5].

3.5.2 Tree Construction

The tree is at the core of KT: it allows us to efficiently achieve consistency by simply
comparing tree root hashes. In this section we describe how the tree is constructed in
ProtonKT.

Nodes The MHT consists of leaf nodes and inner nodes. The topmost inner node is
called the root. Each node has exactly one parent, except the root which has no parent.
All inner nodes have exactly two children: a left child and a right child.

Hashing Each node stores a hash. The leaf hash is described below. The inner node
hash is computed as:

h(hashle f t || hashright)

By hashing from the leaves up towards the root, we build the hash tree. The hash of
the root node is called the tree root hash, or root hash, or tree hash. We can identify the
node with its hash, i.e. sometimes we will say “tree root” when we mean the tree root
hash.

Proton instantiates the hash function h with SHA-256.

Leaf Hashes Recall that each leaf has a leaf index which corresponds to a label and
a revision. Each leaf stores such a value. If the value is present, the leaf hash is
computed as:

h(h(SignedKeyList.data) || minEpochId)

If the value is obsolete, the leaf hash is computed as:

h(h(ObsolescenceToken) || minEpochId)

If there is no value at the leaf, the leaf hash is set to 0n, i.e. a string of n zeros, where
n is the output size of the hash function (in ProtonKT n = 256).

Note that SKL.data is a JSON-encoded string while ObsolescenceToken is a 56-hex-
character string. Clients must check that the encoding is the one they expect for the
respective token type (else we can have type confusion).

16

Overall, this leaf hashing commits the values SKL.data, ObsolescenceToken, and
minEpochId into the tree. The revision is implicitly committed through the leaf in-
dices. This allows all parties to agree on (τ, rev, val), given that they agree on the root
hash.

Label Subtree and Revision/User Subtrees The Merkle Tree in ProtonKT has a fixed
depth of 256 levels. We logically split the tree into an upper part (from the root at depth
1 up to and including the inner nodes at depth 224), and a lower part (from depth 225
until depth 256, i.e. 32 levels).

We call the upper part the label subtree. The leaves of the label subtree (i.e. the inner
nodes of the overall tree at level 224) correspond to the labels, i.e. to email addresses.
By taking the first 224 bits (28 bytes) of the VRF hash of an email address, we thus
obtain a unique (up to hash collisions) label-subtree-leaf: starting from the root, go left
if the VRF bit is 0, or right if it is 1. Repeat with the next VRF bit for the next level of
the tree.

Each label-subtree-leaf is the root of a revision subtree. These revision subtrees are
formed by the remaining 32 levels in the overall tree. The lower part of the overall tree
is therefore made up of many parallel revision subtrees. Because each user has their
own distinct revision subtree, we also call it the user subtree. The leaves of a revision
subtree contain the increasing revisions of the values for this label from left to right.
The leaves of all revision subtrees together are exactly the leaves of the overall tree.

Sparseness The label subtree is sparse, while the individual revision subtrees are
dense. That is, within a revision subtrees all values are in the lower left corner while
all leaves on the right are empty. In the label subtree the non-empty leaves are evenly
distributed due to the VRF hash.

Overall the Merkle Tree in ProtonKT is sparse. This is in contrast to the Merkle
Tree in CT which is dense, because values are inserted from left to right (like in the
revision subtree).

Size There are 2224 ≈ 1067 label-subtree-leaves. This is how many labels (email ad-
dresses) can be inserted into the tree. Each revision subtree has 232 = 4′294′967′296
leaves. Thus every email address can have roughly up to 4 billion revisions.

With proper rate limiting and abuse prevention, none of these bounds should be an
issue in practice (also recall that in Proton’s setting keys rarely change). If the bounds
are reached, one could start a second tree.

Revisions and Inserting Values Initially the revision subtree of a label starts com-
pletely empty. The first value is inserted with revision 1. After that every update
increments the revision by 1. This means that revision 0 is always absent!

3.5.3 Proofs of Inclusion and Absence

The ProtonKT proofs are of the form

(τ, πvr f , πcopath)

τ is the outcome type. πvr f is the VRF proof that can be verified with the server’s VRF
public key, and that can be used to calculate the VRF hash to obtain the leaf index.

17

root = h(h0 || h1)

h0

h00 = ε h01

. . .

ε hbinary(vr f (alice))

. . .

ε h(h(SKL.data1)||minEpId1)︸ ︷︷ ︸
=hA1=Alice’s key at revision 1

h(h(ObslncTokn)||minEpId2)︸ ︷︷ ︸
=hA2=Alice’s rev 2, account disabled

ε

ε

ε

ε

h1

h10

ε . . .

ε hbinary(vr f (charlie))

. . .

ε h(. . .)︸ ︷︷ ︸
=hC1=Charlies’s rev 1

ε

ε

ε

h11

. . .

ε hbinary(vr f (bob))

. . .

ε h(. . .)︸ ︷︷ ︸
=hB1=Bob’s rev 1

ε

ε

ε

ε

Figure 3.2: Tree structure example. Leaves of the label subtree (at depth 224) are shown
in red and leaves of the three revision subtrees (at depth 256) are in blue.

πcopath is the inclusion/absence proof. 6 It is a list of all the neighbors on the path
from the leaf to the root, excluding the root hash.

Verifying the proof

1. First, we verify the VRF proof for the label:

β/⊥ = VRF.veri f y(pk, label, πvr f)

If it passes, we use the VRF hash and the revision to calculate the VRF index:

idx = β || rev

2. Second, from the outcome type τ and the query outcome values val we can
construct the leaf hash (as defined above). Inclusion and obsolescence proofs
must check that the SKL.data is JSON-encoded and the ObsolescenceToken is hex-
encoded.

3. Third, we (re-)compute the hash chain from the leaf to the root using the neigh-
bors in πcopath. The bits in the leaf index determine whether a neighbor should
be hashle f t (bit 1, path goes right) or hashright (bit 0, path goes left).

6Obsolescence proofs are a variant of inclusion proofs. They prove that an ObsolescenceToken is
included in the tree.

18

4. Finally, we compare the computed roothash against the provided one. If they
match, the proof verifies.

In practice, we also need sanity checks such as checking that the input values are
non-null.

Pruning empty subtrees (absence proofs only) Recall that the tree is sparse, i.e. it
will have many empty subtrees. We want to avoid hashing h(0n || 0n), and h (h (0n || 0n) || h (0n || 0n)),
etc. many times. To prune these empty subtrees, we ignore all the initial empty neigh-
bors on the co-path, and we start hashing only when we hit the first non-null neighbor.
(If we have a null/empty neighbor after that, we treat it as 0n.) Proton calls this incom-
plete hashing.

Note that this is only allowed for absence proofs! For inclusion and obsolescence
proofs, we always immediately start hashing at the second last level:

h
(

h(h(SKL.data) || minEpochId)︸ ︷︷ ︸
leaf hash hle f t

|| hright
)

In the example in Figure 3.3, the co-path proofs are as follows (neighbors listed
from bottom-to-top):

• πrev0 = (hrev1, h(hrev2 || ε), ε, . . .)

• πrev1 = (ε, h(hrev2 || ε), ε, . . .)

• πrev2 = (ε, h(ε || hrev1), ε, . . .)

• πrev3 = (hrev2, h(ε || hrev1), ε, . . .)

• πrev4 = πrev5 = πrev6 = πrev7 = (ε, ε, h03, . . .)

In particular, we set h47 = ε and not h47 = h (h (0n || 0n) || h (0n || 0n)).

Note that because for inclusion and absence proofs we start hashing immediately
from the leaf onward (even if the first few neighbors are empty, e.g. in πrev2), we
ensure that the nodes on the path from non-empty leaves to the root always have hash
values. Not ignoring empty neighbors in this case makes sense, because if the leaf
has a value, the subtree induced by the leaf’s parent is no longer empty, so we cannot
prune it.

With this incomplete hashing/subtree pruning, the hash chain computation for
absence proofs will often be non-constant time, because the number of hashes is no
longer fixed at 256. This opens up an (acceptable) side-channel, where an attacker can
try and learn how many hashes a client did, and where in the tree the queried label
may be. This can leak which labels a client has looked up.

3.6 Committing to the Tree Root

Recall that the goal of KT is to give clients a consistent view of all keys in the system.
To achieve this, a consistent view of the tree is required, which in turn is done by
ensuring a consistent view of the tree root. The tree root represents a commitment to
the entire tree.

If clients don’t check for inconsistent views, equivocation attacks are possible: the
server could present one view of the tree to client A and a different view of the tree to
client B.

19

. . .

h
(

h
(
h(ε || hrev1) || h(hrev2 || ε)

)
|| ε

)
h
(
h(ε || hrev1) || h(hrev2 || ε)

)︸ ︷︷ ︸
h03

h(ε || hrev1)

ε hrev1

h(hrev2 || ε)

hrev2 ε

ε︸︷︷︸
h47

ε

ε ε

ε

ε ε

. . .

Figure 3.3: Tree structure example (incomplete). Only the lower left part of a
single revision subtree is shown. hrev1,2 are non-empty leaf hashes of the form
hrevi = h(h(SKL.data || minEpochId))

Proton’s approach ProtonKT piggybacks on Certificate Transparency (CT). The server
publishes the tree root in a web PKI TLS certificate that is logged in CT. This bootstraps
ProtonKT on top of CT, with the assumption that there are existing auditors that en-
sure that CT provides an append-only log.

To publish a new epoch with a new tree root the server requests a new TLS certifi-
cate with the Subject Alternative Name for the following DNS domain (called full KT
domain):

{chainhash[0:32]}.{chainhash[32:64]}.{issuanceTime}.{epochid}.1.keytransparency.ch.

chainhash is the hex-encoded SHA-256 chainhash (not the root hash – see below).7

issuanceTime is the epoch issuance Unix timestamp claimed by the server.8 epochid

is the integer epoch id. 1 is the integer version number of the ProtonKT protocol.

The Certificate Authority will log the issued certificate in a CT log. Later anyone
can query the CT log and search for all such KT domains, thus obtaining all logged
chain hashes.

Chain Hashes and Root Hashes Notice how we commit the chain hash and not the
root hash to the CT logs. The chainhash links different epochs together, and for epoch
i it is computed as:

chainhashi = h(chainhashi−1 || roothashi)

For the first epoch (which has i = 1) we set:

chainhash0 = 0n

where n is the output size of the hash function being used (SHA-256, i.e. n = 256).

7The hash is split into two subdomains because RFC 1035 specifies that each label must be “63 octets
or less”.

8Clients cannot verify that this is the correct timestamp when the epoch was issued. But at least it
commits the server to a single timestamp that everyone then agrees on.

20

https://datatracker.ietf.org/doc/html/rfc1035#section-2.3.4

This chaining commits the entire history of all trees across all epochs as a hash
chain to CT. It does not guarantee that the values in the tree are append-only. This
needs to be verified separately.

Figure 3.4: Chain Hashes and Root Hashes

Verifying the commitment The certificate contains some Signed Certificate Timestamps
(SCTs). An SCT is a signed promise by a CT log that the certificate will be included
within a maximum merge delay in the log. Clients verify that the commitment is valid
by verifying (1) that the certificate is signed by one of the hardcoded CAs, and (2) that
there are at least two SCTs signed by two CT logs, run by different operators, and on a
hardcoded list. Once the certificate is verified, the client can extract the full KT domain
from the Subject Alternative Name field, and thus learn the epoch ID and the chain
hash.

Short KT Domain A short domain format is used for a given epoch id:

epoch.{epochid}.1.keytransparency.ch.

This was introduced because the CommonName in the Subject can be at most 64 bytes
(as per RFC 5280, page 124), hence a second shorter domain is needed. Both the full
KT domain and this short KT domain are included as Subject Alternative Names in the
web-PKI certificate.

It is tempting to use this short domain to search CT logs. However, clients cur-
rently do not check whether the short KT domain is present and correctly format-
ted. Hence a malicious server can put any short domain in the CommonName,
thus hiding the certificate in the CT logs. CT log searches should always search for
*.{epochid}.1.keytransparency.ch (note the leading dot between the wildcard and
the epoch id!).

DoS Risk There is the risk of CAs or CT logs DoS-ing the KT system by refusing
to issue certificates or SCTs. This is mitigated by ProtonKT relying on multiple CAs
and CT logs and hardcoding all of them in the client. If one CA fails, the server can
request a certificate from another CA.

3.7 Timestamps and Recentness

There are several timestamps associated with every epoch:

21

https://www.rfc-editor.org/rfc/rfc5280

• issuanceTime: The Unix timestamp at which the new tree has been constructed
and the epoch is except for the certificate fully issued. This time is chosen by the
server. Proton’s API calls this CertificateTime.

• Certificate.notBefore: Timestamp field in the X.509 certificate. Chosen by the CA.

Let’s Encrypt sets it to the actual certificate issuance time. ZeroSSL, Cloudflare,
or Amazon backdate it slightly to 00:00 (hour:min) on the day of the issuance.

• SCT.timestamp: The time at which the CT log accepted the (pre-)certificate. Cho-
sen by the CT log.

• claimedTime: The time at which the epoch is fully issued, including the certificate.
This timestamp is exposed by Proton’s REST API for engineering and monitoring
purposes. It is not used in the protocol, hence we ignore it in our specification.
We mention it here to avoid confusion when reviewing the implementation and
API.

It is tempting to think that there exists an ordering like:

issuanceTime ≤ Certi f icate.notBe f ore ≤ SCT.timestamp ≤ claimedTime

However, as mentioned above the notBe f ore is chosen by the CA, and when ZeroSSL
sets the hour:minute to 00:00 we have issuanceTime ≥ Certi f icate.notBe f ore.

Similarly, we cannot assume that notBe f ore is ordered across epochs like:

notBe f oret ≤ noteBe f oret+1

If epoch t has a certificate from Let’s Encrypt and epoch t + 1 has a certificate from
ZeroSSL, then notBe f oret ≥ notBe f oret+1.

Because of that, certificate timestamps can only be used as a rough indication of
liveness. For monotonicity, we rely on the epoch ids to be strictly increasing. We
require that the server sets the issuanceTimes to be strictly increasing as well:

issuanceTimet < issuanceTimet+1

Recentness When querying keys, the server needs to convince the client that an
epoch is recent. Otherwise, if Bob is compromised and rotates his keys, the server
could keep showing Alice an old epoch and pretend it is still the latest one. Then
Alice would continue to use the compromised keys.

A first idea to ensure recentness is to require that an epoch must be accompanied
by a web certificate that has a notBe f ore timestamp within the past, say, 24 hours.
However, this can be easily attacked: the server can just request a new certificate every
24 hours for the same old KT domain.

A better idea is to also require that the notBe f ore is within 24 hours of the issuanceTime
(in addition to being within 24 hours of the current time). Because the issuanceTime is
committed in the domain name and thus cannot be changed without equivocating, the
previous attack does not work if we assume that CAs always sets the notBe f ore close
to the time of the certificate request. This is a reasonable assumption. For example,
Let’s Encrypt does not even allow requesters to choose a notBe f ore. Generally CAs
have some flexibility of setting the notBe f ore, with the caveat that they should not
backdate it too far (which is exactly what we require). 9

9https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_

notBefore_Date

22

https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_notBefore_Date
https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_notBefore_Date

Therefore, to verify that an epoch is recent, clients should to the following two
checks:

|notbe f ore− isstimet| ≤ 24h

|currentTime− isstimet| ≤ 24h

3.8 Deletions

So far, we have only considered a label–value dictionary that is append-only. However,
in practice we also want to delete old, unused entries. For example for legal reasons
when a user requests their account deletion, or simply for business reasons as Proton
does not want to operate infinitely growing storage.

Recall that in ProtonKT leaf indices are of the form VRF.hashsk(label) || rev. This
comes at the cost of having additional leakage towards the auditors. However, this
also enables auditors to monitor correctness of deletion, because they can “see” into
the revision subtrees.

The server is allowed to delete values under the following conditions, verified by
the External Auditors:

• The latest revision is never deleted. At least one revision must always be re-
tained.

• Only values that are old enough are deleted. Auditors see when a leaf was
inserted (minEpochId). A leaf of revision t may only be deleted if it has been
superseded by revision t + 1 more than DeletionParam ago. That is, revision t + 1
was inserted more than DeletionParam ago, and the maxEpochId of t is more than
DeletionParam ago.

In ProtonKT, the system parameter DeletionParam is set to 90 days. This is mo-
tivated by the web-PKI certificates for the tree root commitments which expire
after 90 days. 10

• are deleted starting from the lowest revision, and they are deleted continuously
without any gaps. E.g. it is not allowed to delete revisions 1 and 3 but not
revision 2.

Adding deletion to ProtonKT only changes the epoch generation by the server and
adds some checks to the auditors. Client algorithms (in particular Query and Self
Audit) do not change.

3.9 Self Audit

Recall that the goal of Key Transparency is to achieve consistency of username-to-
public-key bindings. Given this consistency, each user can then locally verify that
their binding is correct (i.e. it contains their real keys, and not malicious keys).

Checking correctness done by the Self Audit in ProtonKT: a user’s client looks up
its own label and compares the result against its own keys that it locally knows.11 It
checks that the latest revision in the tree is correct, and that its key history is correct
as well. If there are any unexpected keys, it raises a warning.

10Renewing the certificates does not help because the issuanceTime in the full KT domain must be
within 24 hours of the certificate’s notBefore timestamp (see section 3.11). The other option is to set the
notAfter to a value higher than 90 days, but for that ProtonKT would need a CA other than Let’s Encrypt.

11How does “locally know” work in the Proton web client, where a user can log in on any new device
with an empty state? The Proton server stores the user’s private keys in a keyring encrypted under the

23

Algorithm The client stores a veri f iedRev, initialized to 0.12 This is the last, lowest
revision that the client has audited. It also stores veri f iedCreationTimestamp, the cre-
ation timestamp of the last audited revision. The Self Audit then does the following:

1. Get the latest epoch and verify its commitment.

2. Request all values in the interval [veri f iedRev + 1, latestRev], together with their
proofs.

latestRev is only known to the server, since the client does not know how many
values were inserted since the last Self Audit. Note that the interval may be
empty when veri f iedRev = latestRev.

3. Also request an absence proof for the latestRev + 1.

4. Check all proofs against the epoch’s root hash.

5. If latestRev = 0(= veri f iedRev): Raise a warning and end Self Audit. 13

6. Check all SKL signatures

7. Check that the timestamps in the SKL signatures of the included values are
strictly monotonically increasing, starting from veri f iedCreationTimestamp.

8. For each non-absent val:

• If val is obsolete: Raise a warning. 14

• If val is included: Check that all keys in SKL.data are locally known. If not,
raise a warning.

9. If there are no errors, store veri f iedRev← latestRev
and veri f iedCreationTimestamp← latestRev.SKL.signature.creationTimestamp.

Not Hiding Newer Revisions Client must be sure that latestRev really is the latest re-
vision in the tree, otherwise the server could hide malicious key updates by not show-
ing higher revisions. Currently this is done by checking the absence of latestRev + 1.
This works because if the tree is correctly constructed, revisions are never modified,
and new revisions are created incrementally and continuously without any gaps. Cor-
rect tree construction is checked by the External Audit, see section 3.11.

user’s password. When the user logs in, the user can simply decrypt these keys with their password,
thus now “locally knowing” their keyring.

We assume that the Proton key server cannot tamper with the encrypted keyring. In particular, it
cannot add a malicious key or remove a key because it doesn’t know the password; hence the server
cannot produce a ciphertext that decrypts successfully with the user’s password.

Of course, all of this assumes that the web server honestly delivers the web client and does not modify
the client code.

12Recall that revision 0 is always absent. The first non-empty revision is 1.
13Warn the user that their keys are not yet included in the tree and that they should check back later.

(We assume a user always has keys.)
14Recall that if an address is obsolete, querying clients fall back to the catch-all address of the domain.

Thus emails intended for the disabled user will have been encrypted for the catch-all address. Warn the
user that emails for them may have been rerouted.

24

Rollback Prevention The Self Audit checks that signature timestamps are strictly
monotonically increasing. This is to prevent the server from “rolling back” values to
previous SKLs. Consider Alice who has the following keys: revision 1 contains an
RSA-1024 key. Revision 2 contains both the old RSA-1024 key and a new Curve25519
key. The new ECC key is marked as primary, thus all emails will be encrypted with
it. The RSA key is still kept in the keylist of revision 2 to allow Alice to decrypt old
emails. If the server re-inserted the SKL from revision 1 again as revision 3 (thus
rolling back), then other querying clients would use the old RSA key.

If Alice’s Self Audit checks that SKL signatures are temporally increasing, then this
attack does not work, because the server cannot produce an SKL signature with the
required newer timestamp. 15

Note that even though the ObsolescenceToken contains a timestamp, we need not
it during Self Audit. Unlike the signature timestamp, the ObsolescenceToken’s times-
tamp is chosen by the server so we cannot trust it anyway.

Run Self Audits Regularly Clients are assumed to be online regularly to run Self
Audits, at least every 90 days (due to DeletionParam). If they are offline for longer,
a server may insert a malicious key, later insert the original key back, and delete the
malicious key once it is old enough. Because this increments the revision twice, the
Self Audit will notice that something happened thanks to veri f iedRev, but it won’t see
the malicious key.

Which labels to audit Users can have multiple email addresses associated with their
accounts. Most of them will be active, but some may have been disabled. Clients need
to run Self Audit for all active email addresses (= labels). Disabled addresses should
not be audited, not even for correct obsoletion. This is because in organization non-
personal addresses such as finance@example.com might get reassigned from Alice’s
personal account to Bob’s personal account, e.g. when Alice changes jobs from Head
of Finance to Head of Legal. Then the server tells Alice that finance@example.com
was disabled for her, but the tree will now contain Bob’s keys, which Alice would not
recognize.

For catch-all addresses, the domain owner should run the Self Audit for the label
@example.com (i.e., just the domain prefixed by an @). If there is no Self Audit, the
catch-all address is similarly vulnerable as normal addresses.

3.10 Promise Audit

Sometimes the KT server makes a promise to include a value. With a Promise Audit
clients verify that the server fulfills these promises within the Maximum Merge Delay
(MMD) set to 72 hours.

The server makes promises in two cases: First, when a client requests a new value
to be inserted. Second, when a query returns a new, not-yet-included value. This
happens because epochs are only issued every four hours on average.

In both cases, the client locally stores the promised values:16

promises = {(labeli, τi, SKL.datai, ObsolescenceTokeni, expectedRevi, creationTimei)}i

15Side note: Recall that SKL signatures are not committed in the leaf hash, only the SKL data. How-
ever, the server still stores the signature and has to be able to give it to Alice in order for Alice’s Self
Audit to pass.

16Depending on τi, either SKLdatai or ObsolescenceTokeni must be set, but not both.

25

expectedRev is used to later query this specific revision and check that it matches
SKL.data. The client calculates the duration between creationTime and the then-current
time and checks that it is less than the MMD. If the server does not include the SKL
within the MMD, this is considered misbehavior and a warning is raised. If a different
value is included at expectedRev, this is also misbehavior.

3.11 External Audit

So far we have seen how the tree should be constructed. However, the KT server is
untrusted and may not adhere to the specification. Therefore, we need at least one
honest auditor that checks that the server behaves correctly. If this external auditor
finds an error, this should result in non-repudiable proof. The auditor can use this
proof to convince others that the server behaved maliciously.

These External Audits complement the Self Audits that clients run. Clients are
assumed to be thin end-user devices like phones and laptops. They are energy con-
strained and are offline for longer periods of time (multiple weeks, up to 90 days).
External Auditors on the other hand are assumed to be more powerful, have un-
constrained storage, and are online regularly (always online, or at least every few
hours). External individuals or organizations can easily deploy the Auditor code on
their servers and have it run in the background. As of November 2023, an audit of
the tree containing roughly 50 million leaves takes about 15 minutes on a 4-core CPU
and takes up to 8 GB of disk space. The download of a single epoch is roughly 4 GB,
subsequent epochs can be delta updates.

We move certain checks into the External Auditor, which allows us to reduce the
work that clients have to do. For example, clients only have to Self Audit the latest
epoch because the external auditors guarantee that the tree is append-only. Without
this guarantee, clients would need to look up their own keys with respect to every
single epoch to do a Self Audit.

Properties to check Auditors verify the following properties:

1. Epoch IDs: are incrementally increasing and continuous (no gaps, no missing
epoch).

2. Tree commitments: Each chainhash claimed by the server appears in at least one
CT log. The auditor must check the log, i.e. not simply trust the SCT.

3. Non-equivocation: There is exactly one (epochid, chainhash, issuanceTime) tuple
logged for each epoch with the expected full KT domain. There may be multiple
CT log entries (e.g. pre-certificate and certificate), or even multiple different
certificates, as long as they all contain the same full KT domain.

4. IssuanceTime consistency: The issuanceTimes are strictly monotonically increasing
from one epoch to the next.

5. IssuanceTime-to-Certificate consistency: For all certificates logged for an epoch the
following holds:

|IssuanceTime− certi f icate.NotBe f ore| ≤ 24h

6. Insertions: new values are inserted with revision 1.

26

7. Updates: updates to existing values increment the revision by 1 (and don’t skip
revisions). Old revisions are never overwritten (only deleted, see below).

8. Update consistency: Consider the trees at epoch t and t+ 1, committed as roothasht,
roothasht+1. Check that roothasht+1 is reachable from roothasht by only inserting
new values and deleting old enough values.

A naive approach is for the auditor to simply re-construct the tree from scratch,
and compare the computed root hash against the claimed one. Starting from an
empty tree at epoch 0, the KT server simply gives the external auditor all the
elements that were inserted and all the elements that were deleted. All other
values are not modified.

9. Deletions: Only (val, rev) entries are deleted have been superseded by a newer
revision, and this newer revision was inserted at an epoch that was issued more
than 90 days ago (according to the epoch’s issuanceTime).

Values are deleted incrementally and continuously, starting from revision 1 to
high revisions.

The ordering of checks is loosely relevant. For example, the auditor should check
for equivocation before it recomputes the root hash (to save computation if an equiv-
ocation is found). It should also check that the issuanceTime is unique and consistent
with the certificates before using it to verify correctness of deletions.

Practical implementations In practice, an auditor implementation may want to stream
epoch information from the KT server as new epochs are issued, and assemble its own
local copy of the KT state (i.e. it ingests every epoch state once). Then it also listens on
all CT logs for new certificates for all epochs. As new certificates come in (even for old
epochs), the auditor verifies that the certificate is consistent with its local state. This is
important because CAs may backdate the notBefore, i.e. issue a certificate for an old
epoch (even though Mozilla finds significant backdating problematic 17).

3.12 ProtonKT Subprotocols

In this section we describe the subprotocols that make up ProtonKT.

Definition 3.1 (ProtonKT). The ProtonKT protocol consists of the following subprotocols:
ProtonKT.RequestInsertion, ProtonKT.Publish, ProtonKT.QueryEpoch, ProtonKT.QueryValue,
ProtonKT.SelfAudit, ProtonKT.PromiseAudit, and ProtonKT.ExtAudit.

Below, we define these subprotocols in more detail.

• 0/1← ProtonKT.RequestInsertion(label, SKL.data)

Requests the insertion of a new value for label.

If successful, the client stores (label, SKL.data, expectedRev, currentTime) and checks
that it is included within the Maximum Merge Delay (MMD) of 72 hours.

The server collects all the requests in its local state in a set of pending updates S.

17https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_

notBefore_Date

27

https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_notBefore_Date
https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_notBefore_Date

• ⊥/(Dirt, roothasht, chainhasht, certt)← ProtonKT.Publish(Dirt−1, {labeli, vali}i)

Publishes a new epoch. Inserts all the (label, val) pairs into the key directory Dir
(i.e. the tree) as new revisions and requests certt as a commitment to the updated
tree.

Returns ⊥ if the epoch could not be generated (e.g. the CA refused to issue certt).

• ⊥/(roothasht, issuanceTimet, chainhasht)← ProtonKT.QueryEpoch(t, chainhash′t−1)

Gets for epoch t the tree roothasht and verifies it against the commitment.

Internally, it requests all of (roothasht, chainhasht, certt, chainhasht−1). The web-
PKI certificate certt serves as the commitment. certt should contain two or more
SCTs. This algorithm trusts the SCTs as a promise of CT log inclusion; it does
not scan CT logs. chainhasht−1 is included for convenience (it is needed to com-
pute chainhasht). If chainhash′t−1 is non-null, checks it against the server-claimed
chainhasht−1.

Returns ⊥ if the epoch id t does not exist.

• (τ, rev, val)← ProtonKT.QueryValue(roothasht, label)

Gets the latest value of a given label as well as its revision and type. Also verifies
that the value is consistent with the key directory state at epoch t.

τ is the type of proof (absence, inclusion, obsolescence); in the REST API it is
called Type. val (called SKL in the API) contains other necessary fields (depending
on τ) such as: SKL.data, ObsolescenceToken, minEpochId (see section 3.3).

If τ = abs then rev and val are null. Since we are querying the latest value,
absence is only allowed if rev = 0.

If τ = incl or τ = obs and minEpochId is null, then the value is not yet included
in the tree (but the server promises to include it). In this case, the client can
skip getting and verifying the proof. It should store (τ, rev, val) and verify it later
using ProtonKT.PromiseAudit.

Internally, this function gets the VRF proof πvr f and the Merkle tree proof πcopath
and verifies them against roothasht.

Returns ⊥ if the epoch id t does not exist.

• 0/1← ProtonKT.SelfAudit(roothasht, label, keylist, veri f iedRev, veri f iedCreationTimestamp)

Checks the key history of the user for correctness. Requests all values for label
that are equal or larger than veri f iedRev. Then checks that there are no unex-
pected values. See section 3.9 for full details.

• 0/1← ProtonKT.PromiseAudit(roothasht, promises)

Checks that the promises that the server made to include a value were fulfilled.

• 0/1← ProtonKT.ExtAudit(r, s,Dirr−1, chainhashr−1, issTimer−1)

Runs an External Audit.

28

Verifies that the server adhered to the protocol and evolved the key directory
correctly from epoch r until epoch s. Needs Dirr−1, chainhashr−1, issTimer−1 as a
trusted basis. See also section 3.11.

3.12.1 Message Sequence Diagrams

In this section we state the subprotocols in detail. We use Alice & Bob notation, also
known as security protocol notation. These are simply message sequence diagrams
showing how the different protocol roles exchange messages and which steps and
checks they execute locally. For each role, the diagrams also show the knowledge that
a role must have before the protocol can execute. For brevity, errors are generally not
shown. The protocol is expected to abort upon errors, e.g. if it does not receive a
message or if a check fails.

ProtonKT has the following roles: Server, Client, Auditor, CA, CT Log. We write
CT Logi to indicate that multiple instances of the CT Log role are involved in a pro-
tocol. For simplicity, we only show the roles and the knowledge that are relevant for
each algorithm.

29

ProtonKT.RequestInsertion

Client Server
1 : Knows: label, SKL.data, promises Knows: S, t

2 : label, SKL.data

3 : expectedRev← currentRevForLabel + 1

4 : expectedRev

5 : Stores: promises← promises ∪ {(label, incl, SKL.data, null, expectedRev, currentTime)} S← S ∪ {(label, SKL.data, expectedRev)}

Figure 3.5: ProtonKT.RequestInsertion Sequence Diagram

ProtonKT.Publish

Server CA CT Logi

1 : Knows: t− 1, S,Dirt−1, chainhasht−1, skS Knows: skCA Knows: skCT , pkCA

2 : minEpochId← t
3 : for (labeli, keysi) ∈ S :

Insert val← (keysi, minEpochId) into Dir

4 : Dirt ← the resulting updated directory/tree
5 : roothasht ← roothash of Dirt

6 : chainhasht ← h(chainhasht−1 || roothasht)

7 : isstimet ← currentTime
8 : subject← (chainhasht, isstimet, t, ”1”) // symbolic KT domain

9 : certreqt ← (subject, {subject}skS)

10 : certreqt

11 : serialnum← $ {0, 1}∗

12 : notbe f ore← currentTime
13 : nota f ter ← notbe f ore + 90d
14 : tbscertt ← (serialnum, subject,

notbe f ore, nota f ter)
15 : certt ← (tbscertt, {tbscertt}skCA)

16 : certt

17 : sctTimestamp← currentTime
18 : tCrtEntry← (sctTimestamp, h(pkCA), tbscertt)

19 : SCTt ← (tCrtEntry, {tCrtEntry}skCT)

20 : SCTt

21 : certt, SCTt

22 : return Dirt, roothasht, chainhasht, certt

Figure 3.6: ProtonKT.Publish Sequence Diagram

ProtonKT.QueryEpoch

Client Server
1 : Knows: t, pkCA, pkCT , optionally: chainhash′t−1 Knows: certt, SCTt, roothasht, chainhasht, chainhasht−1

2 : t

3 :
certt︷ ︸︸ ︷

(tbscertt, tbscertsigt),

SCTt︷ ︸︸ ︷
(tCrtEntry, tCrtEntrysig)

4 : roothasht, chainhasht, chainhasht−1

5 : Checks: {tCrtEntrysig}pkCT
= tCrtEntry // Check SCT

6 : Checks: snd(tCrtEntry) = h(pkCA)

7 : Checks: trd(tCrtEntry) = tbscertt

8 : Repeat for SCTs from at least two different log operators
9 : Checks: {tbscertsigt}pkCA

= tbscertt // Check certificate

10 : subject← snd(tbscertt) // Extract fields

11 : notbe f ore← trd(tbscertt)

12 : chainhasht ← f st(subject)
13 : isstimet ← snd(subject)
14 : Checks: subject = (chainhasht, isstimet, t, ”1”) // Check subject

15 : Checks: chainhash′t−1 = chainhasht−1 // If chainhash′t−1 is known (see External Audit)

16 : Checks: chainhasht = h(chainhasht−1 || roothasht) // Check epoch chaining

17 : Checks: |notbe f ore− isstimet| ≤ 24h // Check claimed epoch issuanceTime aligns with CA’s notBefore

18 : Checks: |currentTime− isstimet| ≤ 24h // Check epoch is recent (may be skipped by External Audit querying an old epoch)

19 : return roothasht, isstimet, chainhasht

Figure 3.7: ProtonKT.QueryEpoch Sequence Diagram

ProtonKT.QueryValue

Client Server
1 : Knows: roothasht, label, pkS, promises Knows: (omitted for brevity)

2 : label

3 :
SKL.data, ObsolescenceToken,

minEpochId, rev

4 : τ, πvr f , πcopath

5 : Checks: rev = 0 // If τ = abs (we query the latest value!)

6 : Checks: rev > 0 // If τ = incl/obs

7 : if (τ = incl ∨ τ = obs) ∧minEpochId = null
8 : Stores: promises← promises ∪ {(label, τ, SKL.data,

ObsolescenceToken, rev, currentTime)}
9 : return (τ, rev, val)

10 : Checks: SKL.data is valid JSON // If τ = incl

11 : Checks: ObsolescenceToken is a non-empty hex string // If τ = obs

12 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f)

13 : idx ← vr f hash || rev
14 : lea f hash← h(h(SKL.data) || minEpochId) // If τ = incl

lea f hash← h(h(ObsolescenceToken) || minEpochId) // If τ = obs

lea f hash← ε // If τ = abs

15 : Checks: roothasht = hashcopath(τ, idx, lea f hash, πcopath) // Computes the roothash, see subsection 3.5.3

16 : π′copath

17 : idx′ ← vr f hash || rev+ 1 // Check next value is absent

18 : Checks: roothasht = hashcopath(abs, idx′, ε, π′copath)

19 : return (τ, rev, val)

Figure 3.8: ProtonKT.QueryValue Sequence Diagram

ProtonKT.SelfAudit

Client Server
1 : Knows: roothasht, label, keylist, veri f iedRev, veri f iedCreationTimestamp Knows: (omitted)

2 : label, veri f iedRev

3 : {SKL.datai, SKL.sigi, ObsolescenceTokeni, minEpochIdi}latestRev
i=veri f iedRev+1

4 : πvr f , {τi, πcopath,i}latestRev+1
i=veri f iedRev+1

5 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f)

6 : for i ∈ [veri f iedRev + 1, latestRev] : // Check incl/obs proofs (note: interval may be empty)

7 : Checks: SKL.datai is valid JSON // If τi = incl

8 : Checks: ObsolescenceTokeni is a non-empty hex string // If τi = obs

9 : idx ← vr f hash || i
10 : lea f hash← h(h(SKL.datai) || minEpochIdi) // If τi = incl

lea f hash← h(h(ObsolescenceTokeni) || minEpochIdi) // If τi = obs

lea f hash← ε // If τi = abs

11 : Checks: roothasht = hashcopath(τi, idx, lea f hash, πcopath,i)

12 : idx ← vr f hash || latestRev + 1 // Check absence proof

13 : Checks: roothasht = hashcopath(abs, idx, ε, πcopath,latestRev+1)

14 : if latestRev = 0 : Raise warning and return // Keys not yet included

15 : tempCreationTime← veri f iedCreationTimestamp
16 : for i ∈ [veri f iedRev + 1, latestRev] :
17 : if τi = incl :
18 : Checks: SKL.sigi verifies with a key in keylist // Check signatures

19 : Checks: tempCreationTime < SKL.sigi.creationTimestamp // Check strict monotonicity

20 : tempCreationTime← SKL.sigi.creationTimestamp
21 : for i ∈ [veri f iedRev + 1, latestRev] : // Check new revisions for correctness

22 : if τi = abs : Raise warning // Unexpected gap, either legal deletion or misconstructed tree

23 : if τi = obs : Raise warning // Emails may have gone to catchall while label was obsolete

24 : if τi = incl and any of the keys in SKL.datai not in keylist: Raise warning // Unexpected key

25 : Stores: veri f iedRev← latestRev
26 : Stores: veri f iedCreationTimestamp← tempCreationTime

Figure 3.9: ProtonKT.SelfAudit Sequence Diagram

ProtonKT.PromiseAudit

Client Server
1 : Knows: roothasht, promises Knows: (omitted for brevity)

2 : for (label, τ, SKL.data, ObsolescenceToken, expectedRev, creationTime) ∈ promises

3 : label, expectedRev

4 : minEpochId

5 : τ′, πvr f , πcopath

6 : if τ′ = abs :
7 : if |currentTime− creationTime| > MMD : // Check inclusion within MMD

8 : Raise warning
9 : else :

10 : continue // Try again in a later Promise Audit

11 : Checks: SKL.data is valid JSON // If τ = incl

12 : Checks: ObsolescenceToken is a non-empty hex string // If τ = obs

13 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f)

14 : idx ← vr f hash || expectedRev
15 : lea f hash← h(h(SKL.data) || minEpochId) // If τ = incl

lea f hash← h(h(ObsolescenceToken) || minEpochId) // If τ = obs

16 : Checks: roothasht = hashcopath(τ, idx, lea f hash, πcopath) // If proof fails, raise warning for this item

17 : Stores: promises← promises\{all successful item audits}

Figure 3.10: ProtonKT.PromiseAudit Sequence Diagram

ProtonKT.ExtAudit

Auditor Server CT Logi

1 : Knows: r, s,Dirr−1, chainhashr−1, issTimer−1 Knows: (omitted) Knows: {{certi}i,t}t

2 : Precondition: Dirr−1 correctly constructed

3 : for t ∈ [r, s] :

4 : roothasht, issTimet, chainhasht ← ProtonKT.QueryEpoch(t, chainhasht−1)

5 : Checks: issTimet−1 < issTimet

6 :
∗.{t}.1.keytransparency.ch

−−−→

7 :
{certi}i,t←−−−

8 : Checks: only certs with the expected full KT domain and no others

9 :
t

−−−−−−−−−−−−−−−−−−→

10 : {(
idxi︷ ︸︸ ︷

vr f hashi || revi, valhashi, minEpochIdi)}i︸ ︷︷ ︸
insertions

11 : for elei ∈ insertions :
12 : Checks: minEpochIdi = t
13 : Checks: revi = 0
14 : Checks: The entire revision subtree for vr f hashi was empty in Dirt−1

15 :
{(vr f hashi || revi, valhashi, minEpochIdi)}i︸ ︷︷ ︸

updates

16 : for elei ∈ updates :
17 : Checks: minEpochIdi = t
18 : Checks: vr f hashi || revi was empty in Dirt−1

19 : Checks: vr f hashi || revi − 1 was non-empty in Dirt−1

Figure 3.11: ProtonKT.ExtAudit Sequence Diagram (Part 1)

ProtonKT.ExtAudit (continued)

Auditor Server CT Logi

20 :
{vr f hashi || revi}i︸ ︷︷ ︸

deletions

21 : for elei ∈ deletions :
22 : Checks: vr f hashi || revi − 1 was empty in Dirt−1 or revi = 0
23 : Checks: vr f hashi || revi was non-empty in Dirt−1

24 : Checks: vr f hashi || revi + 1 was non-empty in Dirt−1 // revi + 1 cannot have been upserted in t

25 : minEpochId′ ← minEpochId of leaf vr f hashi || revi + 1
26 : Checks: |minEpochId′.issTime− t.issTime| > DeletionParam

27 : Dirt ← apply insertions, updates, deletions to Dirt−1

28 : roothashcomp ← roothash of Dirt

29 : Checks: roothasht = roothashcomp

30 : Postcondition: Dirs correctly constructed

Figure 3.12: ProtonKT.ExtAudit Sequence Diagram (Part 2)

4 Analysis

In this section, we analyze ProtonKT. We first look at the privacy goals. Next, we
define the security properties that we want ProtonKT to achieve. We also describe the
adversary model under which these properties should hold. After that we do a secu-
rity analysis, and we argue why the ProtonKT scheme achieves the stated properties.

4.1 Privacy Analysis

In this section we describe the privacy goals that ProtonKT has. To limit the scope
we do not give a detailed analysis for the privacy properties. We do, however, give a
rough sketch of the design decisions that are intended to support the privacy goals.

The goal of privacy is to leak as little information about the contents of the key
directory as possible. The main threat actors are the External Auditors, because they
have access to the entire tree (which they need to recompute the tree to check its
properties).

ProtonKT accepts that auditors can learn the following from the tree:

• An upper bound on the number of accounts in the tree. It is obvious from the
tree whether a revision subtree is empty or not. However, auditors do not learn
how many of these accounts are active and how many are disabled.

• How many revisions any given user has. This is obvious from the revision sub-
tree leaves.

• In which epoch any given revision was inserted. This is necessary for auditors
to check that only old-enough values are deleted.

However, ProtonKT’s goal is to prevent auditors from learning the following:

• Which email addresses are in the tree. The VRF used to compute leaf indices
enforces that one must actively query the server to learn an email address’ index.

This allows the server to prevent enumeration attacks, e.g., via rate-limiting. Sim-
ilarly, Proton could hide the email addresses of business customers by not re-
sponding to queries from users outside the business’ organization.

• Whether a revision that is present in the tree is active or disabled. Recall that
both the SKL.data and the ObsolescenceToken contain randomness (key finger-
prints are hashes,1 and the random part of the ObsolescenceToken). The auditor
would need to compute the preimage of h(SKL.data) and h(ObsolescenceToken)
to distinguish them, which is infeasible.

1We work in the random oracle model.

38

Another threat actor are clients. Their queries and Self Audits necessarily reveal
the co-path to them. By repeatedly querying a label, the difference between the co-
paths leaks which neighboring parts of the tree have changed. This allows for the
tracing attack described by SEEMless [2].

Privacy is also a core design goal of CONIKS, SEEMless, and Parakeet. For exam-
ple, Parakeet defines leakage functions to specify how much information the protocol
leaks. We refer to these works for an in-depth analysis of privacy in KT protocols.

4.2 Security Properties

We first define the security property that the ProtonKT protocol should provide:
Query-to-SelfAudit Consistency. After that we will analyze how ProtonKT achieves
it.

Informally we want that everything that can be queried must also be seen by a Self
Audit. The queries and the Self Audit should agree on the (label, τ, rev, val) tuples.
Unless there is already some detection of server misbehavior. Slightly more formally
this means:

Definition 4.1 (Query-to-SelfAudit Consistency). We say that ProtonKT provides Query-
to-SelfAudit Consistency, if

• whenever there was a successful External Audit of epoch t

• and client A runs a successful Self Audit SA for its label at epoch s ≤ t and SA passes
with latestRev ≥ rev,

• and prior to epoch t A has run a successful Self Audit at least once every DeletionParam
(e.g. every 90 days),

• and a query Q for label in epoch r ≤ t returned outcome O = (τ, rev, val),

• and – if Q returned O as a promise P – there was a successful Promise Audit that sees P
at an epoch p with r < p ≤ t,

• then client A agrees that (τ, rev, val) is the expected outcome for rev.

Note that there is no relationship between r, s, and p, other than all being bounded
by t. Figure 4.1 visualizes the components that are mentioned in the property, as well
as highlighting the time points at which they can occur.

Figure 4.1: Visualization for Query-to-SelfAudit Consistency
(showing also other possible locations of queries, Self Audits, and Promise Audits)

39

Query-to-SelfAudit Consistency relates Self Audits to queries to make sure they
are consistent. Importantly, it also relates queries to other queries (in the presence of a
Self Audit!): if Query-to-SelfAudit consistency holds, then two clients B, C who query
label A agree with client A’s Self Audit; therefore B and C also agree with each other.

Deletions DeletionParam is the minimum age a value need to have to be eligible for
deletion if it has been superseded (90 days in ProtonKT). We can only have security
for queries that are not too far before any Self Audit: Consider a client who is offline
for a long time (e.g. a user traveling for one year on a sabbatical and not checking
their business email). Also consider that some values are inserted and later deleted
during that time, and the client runs a Self Audit only after they were deleted. Then
the deleted value may have been queried by other users, but the traveler’s Self Audit
does not see them.

Need for Audits This security property only holds in the presence of a successful
External Audit. If there was no such audit, then the server could have behaved ar-
bitrarily, e.g. it could have equivocated, or modified values in the tree, or illegally
deleted values.

In addition, if the query returned a promise, we also require that this promise is
verified. Otherwise, the server could trivially reply with a promise for any value.

Furthermore, client A who owns the label must do regular Self Audits. For exam-
ple, consider that A runs Self Audit SA1, then is offline for 120 days (> DeletionParam),
and then runs Self Audit SA2. Then there may be revisions that were inserted in the
tree just after the SA1 and deleted before SA2. SA2 would only see the unexpected
jump in the revision, but not the values. However, these values could have been suc-
cessfully queried in the meantime.

Comparison Query-to-SelfAudit Consistency is roughly comparable to SEEMless’
VKD soundness definition [2, Appendix B], with the difference that we also need to
account for the DeletionParam and the Promise Audits.

Compared with the cVKD soundness definition given by Parakeet [3, Definition 4,
Appendix B], we have added the Promise Audits but do not have tombstones.

4.3 Adversary Model

In this section we discuss what kind of adversary can try and attack ProtonKT. We
define what power the adversary is allowed to have, and what we assume it cannot
do.

We give the adversary the following power:

• The adversary controls the network (Dolev-Yao style adversary). It can reorder,
replay, drop, insert, and modify messages.

• The adversary can corrupt the KT server. The server is not trusted and can
deviate from the protocol. In particular, it can insert, modify, delete leaves in the
Merkle tree.

However, we assume that the cryptographic primitives hold. In particular, we
assume that SHA-256 is collision resistant and preimage resistant. We also assume

40

that the VRF satisfies uniqueness (even under malicious key generation).2 We also
assume that at most one CT log operator is malicious and that at least one CA and at
least one CT log are online and handling requests. Finally, we assume that at least one
honest auditor has a consistent view of the global CT state.

4.4 Security Analysis

In this section we provide an analysis of the security of ProtonKT. Our analysis will
proceed as follows: we begin by assuming that the security property is broken. Next,
we consider possible broken states. For each of them we will reason about how this
state was reached. Finally, if all goes well, we will see that the starting point from
which we could reach this broken state cannot happen. In other words, we reason
backwards. We start from an attack state, look at how it could have been reached, and
then end in a contradiction.

By nature, such an analysis can only consider the high-level protocol ideas. There
may still be subtle bugs, or cases we forgot to consider.

4.4.1 Classic Attacks are Detectable by External Audits

There are two classical threats to transparency protocols: equivocation and non-append-
only-ness of the tree (up to allowed deletions). These affect all KT protocols, and also
ProtonKT. Both of them can break Query-to-SelfAudit consistency.

In (root hash) equivocation, also known as split-world-view attack, the server forks
the tree into two different histories. This allows it to present one view of the tree to
some clients, and a different view to other clients, thus breaking Query-to-SelfAudit
Consistency. However, this split-view has to be maintained indefinitely.

In non-append-only-ness, the server deletes elements from the tree that it shouldn’t.
For example, it inserts a fake entry, waits for the victim to query the malicious entry,
and then deletes the entry again for the owner runs a Self Audit. This breaks Query-
to-SelfAudit consistency.

Detection not Prevention ProtonKT does not aim to prevent a malicious server from
executing these attacks. Instead, ProtonKT aims to detect them. This is again the idea
of transparency: if we cannot prevent, then at least detect. This is why our security
properties require that an External Audit has passed.

Next, we argue that these classic transparency attacks are detected by External
Audits. In other words, External Audits only pass if there is no such attack.

Root Hash Equivocation

Assume that the server has equivocated at epoch t, i.e. it was possible for the server
to reply to two epoch queries Q, U for the same epoch t with different roothashes
roothashQ

t ̸= roothashU
t , such that both queries accept their respective root hashes, and

– importantly – such that this equivocation cannot be detected by external auditors. 3

2For ECVRF this should hold if the curve and group generator are from a trusted source [5, Section
7]. Since ProtonKT hardcodes the parameters of ECVRF-EDWARDS25519-SHA512-TAI, the parameters
can easily be checked.

3By epoch query we mean a run of ProtonKT.QueryEpoch. Recall that the other algorithms such
as ProtonKT.QueryValue, ProtonKT.SelfAudit, ProtonKT.PromiseAudit, ProtonKT.ExtAudit all need to be
preceded by a run of ProtonKT.QueryEpoch to get the root hash.

41

Since Q accepted roothashQ
t , there must exist a chainhashQ

t and a chainhashQ
t−1 such

that chainhashQ
t = h(chainhashQ

t−1||roothashQ
t). There must also exist a certQ

t that con-
tains chainhashQ

t and two or more SCTQ
t,i . The same reasoning also applies to U,

chainhashU
t , chainhashU

t−1, certU
t .

Case 1 (chainhashQ
t ̸= chainhashU

t). If auditors cannot detect the equivocation, this means
that they don’t see either certQ

t or certU
t , or neither of them, in any CT log.

This can happen if the auditor has an inconsistent view of the global CT logs. However,
we assumed that this does not happen.
This can also happen when at least two different CT logs by different operators (since
each certificate contains two or more SCTs from different log operators,4 and ProtonKT
clients check this) either did not include the certificate (thus breaking their promise),
or when both of them are down and not responding to queries. In any case, this is
a contradiction to our assumption that at least one CT log operator is a trusted third
party and that the auditor can see the global CT state.

Case 2 (chainhashQ
t = chainhashU

t). In this case auditors cannot detect equivocation
because the server can set certQ

t = certU
t and only log a single certificate to CT. But

since roothashQ
t ̸= roothashU

t this means that the server has found a hash collision,
which contradicts our assumptions. In other words the server has found two different
(rh||ch) ̸= (rh′||ch) such that h(rh||ch) = h(rh′||ch).

In both cases we have a contradiction. Thus equivocation is detectable by External
Auditors.

Non-append-only-ness

Assume that the server has violated append-only-ness-with-deletion. That is, either
(case 1) it has overwritten an existing non-absent value with a different non-absent
value, or (case 2) it has deleted a value that it should not have (e.g. the value was the
latest revision, or the next-higher revision was not yet old enough). Also assume that
this is not detectable by auditors.

However, the external audit iterates over all leaves and compares for each index
the old and the new leaf: a leaf in the new tree is either unchanged, or changed from
absent to present (insertion), or changed from present to absent while satisfying the
deletion conditions. Hence the auditors must see the wrongly changed value, which
is a contradiction to the assumption that they don’t detect it.

Thus if an External Audit has passed for epoch t, neither equivocation nor non-
append-only-ness (up to legal deletion) can have happened for any epoch s ≤ t.

4.4.2 Analysis of Query-to-SelfAudit Consistency

Assume there was a successful External Audit at epoch t. Additionally assume there
was a Self Audit SA by a client A for its label at epoch s ≤ t and SA passes with
latestRev ≥ rev. Also assume that A has run Self Audits at least every DeletionParam
time. Next, assume we have a value query Q for label at epoch r ≤ t. Let Q return

4This is required by Apple Safari (https://support.apple.com/en-ca/HT205280) and Google
Chrome (https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.
md). Thus CAs such as Let’s Encrypt automatically submit certificates to two or more logs when issuing
them.

42

https://support.apple.com/en-ca/HT205280
https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.md
https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.md

outcome OQ = (τQ, rev, valQ). If Q returns OQ as a promise P, assume that there
exists a Promise Audit PA of P at epoch p with p ≤ t. Finally, for the contradiction
assume that client A sees outcome OA = (τA, rev, valA) with OQ ̸= OA. When can this
situation happen?

Case i (rev = 0). In this case we must have τQ = abs because for inclusion and
obsolescence ProtonKT.QueryValue enforces that rev > 0. We must also have τA = abs
because the Self Audit is initialized with veri f iedRev = 0 under the assumption that
revision 0 is absent. Thus the Self Audit cannot be convinced that revision 0 is not
absent. Recall that valabs = ∅ by definition. Thus we must have OQ = OA.

Case ii (rev > 0). W.l.o.g. assume that SA is the first Self Audit of A that has
latestRev ≥ rev. That is, SA sees OA and upon completion it sets veri f iedRev′ ←
latestRev. All later Self Audits of A don’t see OA again because they only look at
values ≥ veri f iedRev′ + 1. Thus this single SA which sees OA fully defines client A’s
view of what type τ and value val its label should have at revision rev.

We now need to analyze the cases in which Q and this specific first SA can disagree.
In the following, we assume that rev > 0 and reset the case numbering for (slightly)
more clarity.

Case A (no promise). First, let us analyze the case where Q returns OQ based
on a tree proof, i.e. not as a promise. For clarity, we omit the prefix ii.A in the case
numbering.

Case 1 (different revision subtrees). Assume Q computes leaf index idxQ =
VRF.proo f ToHash(πQ)||rev, and similarly A computes idxA = VRF.proo f ToHash(πA)||rev.
If VRF.proo f ToHash(πQ) ̸= VRF.proo f ToHash(πA), then trivially idxQ ̸= idxA. That
is, Q and A believe label to be at different leaves in the label subtree (see subsec-
tion 3.5.2). However, this cannot happen due to our assumption that uniqueness of
VRFs holds. Thus we must have VRF.proo f ToHash(πQ) = VRF.proo f ToHash(πA).
This means that Q and A must agree on the label-subtree-leaf, which also means that
they see the same revision subtree for label. We will need this fact below.

Case 2 (same revision subtrees). In this case the leaf indices are the same (by Case 2.1
and the definition of leaf indices):

idxQ = (VRF.proo f ToHash(πQ) || rev) = (VRF.proo f ToHash(πA) || rev) = idxA

In other words, Q and SA consider the same leaf (but possibly in different trees).

Case 2.1 (r = s). Assume Q and SA happen at the same epoch.

Case 2.1.1 (roothashQ
r ̸= roothashA

s). This is equivocation, which is a contradiction to
our assumption that an External Audit has passed at epoch t with r, s ≤ t, since we
concluded that External Audits detect equivocation.

Case 2.1.2 (roothashQ
r = roothashA

s). In this case, Q and A are seeing the same tree.
What can still go wrong?

Case 2.1.2.1 (lea f hashQ
idx ̸= lea f hashA

idx). Since the roothashes are the same, there must
be a hash collision somewhere on the path from the leaf to the root. This is a contra-
diction to our assumption that SHA-256 is collision resistant.

Case 2.1.2.2 (lea f hashQ
idx = lea f hashA

idx). Assume the leaf hashes are the same.

Case 2.1.2.2.1 (valQ ̸= valA). Assume the leaf hashes are equal but the values are not
(and hence OQ ̸= OA).

43

Case 2.1.2.2.1.1 (τQ = abs, τA = abs). Cannot be because then the values are not dif-
ferent: valQ = valA = ∅.

Case 2.1.2.2.1.2 (τQ = abs, τA = incl/obs). Cannot be because then:
lea f hashQ

idx = ε ̸= h(h(SKL.data/ObsolescenceToken) || minEpochId) = lea f hashA
idx

and in this branch we assumed that the leaf hashes are equal.

Case 2.1.2.2.1.3 (τQ = incl/obs, τA = abs). Same as the previous case.

Case 2.1.2.2.1.4 (τQ = incl/obs, τA = incl/obs). Cannot be because then we must have
a hash collision in the leaf hash. (For all the four possible combinations.)

Case 2.1.2.2.2 (valQ = valA). Since OQ ̸= OA we must have τQ ̸= τA. Recall from
section 3.3 that valabs = ∅, valincl = {data, minEpochId}, and
valobs = {ObsolescenceToken, minEpochId}.

Case 2.1.2.2.2.1 (τQ = abs, τA ̸= abs). Recall that we have rev > 0. However,
ProtonKT.QueryValue checks that rev = 0 for τ = abs, so it would raise a warning.
Similarly, ProtonKT.SelfAudit raises a warning for τ = abs in the final for-loop. That
is, Self Audit initializes veri f iedRev = 0 and only allows non-absent updates. Both are
contradictions to our assumption that Q and SA completed successfully.

Case 2.1.2.2.2.2 (τQ ̸= abs, τA = abs). Same as the previous case.

Case 2.1.2.2.2.3 (τQ = incl, τA = obs). Because valQ = valU we must have data = ObsolescenceToken,
and Q interprets it as an SKL data and A as an ObsolescenceToken. However, this is a
contradiction to the fact that the algorithms checks that the SKL data is JSON-encoded
and that ObsolescenceToken is a non-empty hex value.

Case 2.1.2.2.2.4 (τQ = obs, τA = incl). Same as the previous case.

Case 2.2 (r ̸= s). Assume Q and SA happen at different epochs. Recall from Case 2
that idx = idxQ = idxA.

Case 2.2.1 (lea f hashQ
idx = lea f hashA

idx). Same as above in r = s (Case 2.1.2.2).

Case 2.2.2 (lea f hashQ
idx ̸= lea f hashA

idx). Assume the leaf hashes differ between the tree
that Q sees and the tree that A sees. Thus we must have valQ ̸= valA.

Case 2.2.2.1 (equivocation). Assume Q and A are seeing trees that have diverged. This
is a contradiction to the earlier conclusion that an External Audit (which we assumed
has run) detects equivocation.

Case 2.2.2.2 (no equivocation). Assume there is a single tree that has been evolved
from epoch r to epoch s (through insertions, updates, deletions).

Case 2.2.2.2.1 (leaf modified in-place). Assume that the value of our leaf at idx was
maliciously modified in-place. This is a contradiction to the earlier conclusion that an
External Audit (which we assumed has run) detects non-append-only-ness.

Case 2.2.2.2.2 (leaf illegally deleted). Same as leaf modified in-place.

Case 2.2.2.2.3 (leaf legally deleted). Assume the leaf at idx was legally deleted be-
cause it was superseded by a newer leaf with revision rev+ 1 more than DeletionParam
time ago. Recall that SA is the first Self Audit that sees rev. Thus there was no Self
Audit in the time interval [rev inserted, (rev + 1 inserted) + DeletionParam]. That is,
SA must have run more than DeletionParam after rev+ 1 (sic!) was inserted. This is a
contradiction to our assumption that A has run Self Audits every DeletionParam time.

44

Case B (promise). Now let us analyze the case where Q returns OQ as a promise
P. By our initial assumption there exists a successful Promise Audit PA that sees P at
epoch p ≤ t. For clarity, we omit the prefix ii.B in the case numbering.

Case 1 (not included). Assume the server did not include OQ in the tree at p.

Case 1.1 (|time(P)− time(R)| > MMD). In this case PA raised a warning, which is a
contradiction to the assumption that PA passed.

Case 1.2 (|time(P)− time(R)| ≤ MMD). In this case PA passed but saw neither an in-
clusion nor obsolescence proof for P. This is the contradiction to the assumption that
PA is the specific Promise Audit which saw P in the tree.

Case 2 (included). Assume OQ is included in the tree at p. Here we can repeat the
same argument as Case A, setting r ← p and Q← P.
Only Case 2.1.2.2.2.1 is modified to instead of ProtonKT.QueryValue raising a warning
because the check fails, ProtonKT.PromiseAudit either raises a warning because the
MMD is overdue, or PA did not see P (because τ = abs is the same as Case 1).
With these modifications we can see that all branches of the argument in Case A hold.

Overall all branches lead to a contradiction. Therefore we can conclude that our
initial assumption that OQ ̸= OA was wrong, thus we must have OQ = OA. Thus
Query-to-SelfAudit consistency holds.

Leaf index collisions In the argument above we needed uniqueness of VRFs but not
collision resistance. But what if there is a VRF hash collision? That is, what if two
different (normalized) email addresses A and B VRF-hash to the same value?

For Self Audits, if a leaf contains the keys for A, then B’s Self Audit will not
recognize them as its own, and will thus raise a warning. Thus it is in the interest of
the server not to trigger a VRF hash collision. Because B’s Self Audit will abort raising
a warning, this is also not an attack on Query-to-SelfAudit consistency (which only
considers successful audits).

Note that in the argument for Query-to-SelfAudit Consistency we don’t have such
cases because we are only looking at a fixed label.

No Self Audits, No Security Note that Self Audits and their correctness checks are
critical for any practical security. If Self Audits are not run, spurious key changes are
not detected by KT. Users need to be online regularly and run Self Audits, at least
once every three months.

Non-Proton Addresses This need for Self Audits means that Non-Proton Addresses
(i.e., addresses that have no Proton account) cannot get any security from KT. The key
server can insert malicious keys into the tree, and because they are not audited we
cannot be sure that these keys are correct.

However, this problem is not new, it also exists without KT. KT simply does not
improve over the status quo if there are no Self Audits. Users should continue to use
the Address Verification feature to pin keys of Non-Proton Addresses.

45

5 Future Work

In this section, we take a look at what’s next for ProtonKT, and future improvements
that may be done.

5.1 Additional verification of Merkle Tree roots

As mentioned in section 3.6, we currently publish chain hashes to Certificate Trans-
parency logs (via a TLS certificate), committing the Merkle Tree root of every epoch to
a public append-only log. The CT log provides a Signed Certificate Timestamp (i.e. a
promise to include the TLS certificate in the log), which is verified by the clients. Ad-
ditionally, auditors verify that the CT log is operating consistently. This ensures that it
is impossible for any single party to equivocate and surreptitiously serve a malicious
key to a user. Nevertheless, there are still a number of improvements we could make
to strengthen the commitment and improve the verification of Merkle Tree roots in the
clients, to provide even more avenues for detection of misbehavior of the server.

5.1.1 Publishing to Blockchains

First of all, we may want to additionally publish the chain hashes to a public blockchain,
such as that of Bitcoin or Ethereum. Users and auditors could then choose to addi-
tionally verify that epochs are included in these blockchains before trusting any given
epoch.

The reason this was not done in the initial version is that for the web client, verify-
ing data in a public blockchain is difficult, and for the mobile clients, verifying data in
a public blockchain is prohibitively expensive. However, one way to circumvent this
would be for users to run their own blockchain node, which the client could then com-
municate with, if the user configures it to. This functionality would benefit advanced
users with particularly strong security requirements.

5.1.2 Verifying SCT inclusion proofs

An alternative security improvement, that could potentially be done without involve-
ment from the user, would be to verify that TLS certificates which a given Certificate
Transparency log promised to include (via a Signed Certificate Timestamp), were in-
deed included within the “maximum merge delay” of Certificate Transparency (24
hours).

This could be done by storing Signed Certificate Timestamps locally, and later
requesting an inclusion proof, potentially indirectly (via Proton’s servers). If the cer-
tificate was not included, the user should be warned, similarly to if a Signed Key List
was not included in Key Transparency within its maximum merge delay (currently 72
hours).

46

In the web client, this functionality could alternatively be left to the browsers,
which may also implement this verification. In this case, simply making a request to
the relevant domain (over HTTPS) would be sufficient for the browser to verify the TLS
certificate, its Signed Certificate Timestamp, and later its inclusion in the Certificate
Transparency logs.

5.2 Standardization

Our current implementation of Key Transparency is specific to Proton, and intended
to protect communications between Proton users. In the future, it may be desirable to
also protect communications between Proton and non-Proton users in a similar way.
To achieve this, (a version of) Key Transparency will need to be standardized and
implemented by various providers.

To this end, there is a Key Transparency Working Group at the Internet Engineering
Task Force (IETF)1, aiming to standardize a variant of Key Transparency. We plan
to contribute to this work whenever relevant, and may implement the standardized
version of Key Transparency once finalized.

1https://datatracker.ietf.org/wg/keytrans/about/

47

https://datatracker.ietf.org/wg/keytrans/about/

Bibliography

[1] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. CONIKS: Bringing key transparency to end users. Cryp-
tology ePrint Archive, Paper 2014/1004, 2014. https://eprint.iacr.org/2014/

1004.

[2] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. SEEM-
less: Secure end-to-end encrypted messaging with less trust. Cryptology ePrint
Archive, Paper 2018/607, 2018. https://eprint.iacr.org/2018/607.

[3] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan
Oztürk, Kevin Lewi, and Sean Lawlor. Parakeet: Practical key transparency for
end-to-end encrypted messaging. Cryptology ePrint Archive, Paper 2023/081,
2023. https://eprint.iacr.org/2023/081.

[4] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Pro-
ceedings of the 40th Annual Symposium on the Foundations of Computer Science (FOCS
‘99), pages 120–130, 1999. https://dash.harvard.edu/handle/1/5028196.

[5] Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Včelák. Verifi-
able Random Functions (VRFs). RFC 9381, August 2023. https://datatracker.

ietf.org/doc/html/rfc9381.

[6] Werner Koch. OpenPGP Web Key Directory. Internet-Draft draft-koch-openpgp-
webkey-service-16, Internet Engineering Task Force, May 2023. https://

datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/16/.

48

https://eprint.iacr.org/2014/1004
https://eprint.iacr.org/2014/1004
https://eprint.iacr.org/2018/607
https://eprint.iacr.org/2023/081
https://dash.harvard.edu/handle/1/5028196
https://datatracker.ietf.org/doc/html/rfc9381
https://datatracker.ietf.org/doc/html/rfc9381
https://datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/16/
https://datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/16/

	Introduction
	Background
	Keys at Proton
	Verifiable Random Functions

	Specification
	Overview
	Labels: Email Addresses
	Values
	Signed Key Lists
	Disabled Addresses and Obsolescence Tokens
	Query Outputs: Values for Absence, Inclusion, Obsolescence

	Epochs
	The Merkle Hash Tree
	Leaf indices
	Tree Construction
	Proofs of Inclusion and Absence

	Committing to the Tree Root
	Timestamps and Recentness
	Deletions
	Self Audit
	Promise Audit
	External Audit
	ProtonKT Subprotocols
	Message Sequence Diagrams

	Analysis
	Privacy Analysis
	Security Properties
	Adversary Model
	Security Analysis
	Classic Attacks are Detectable by External Audits
	Analysis of Query-to-SelfAudit Consistency

	Future Work
	Additional verification of Merkle Tree roots
	Publishing to Blockchains
	Verifying SCT inclusion proofs

	Standardization

	Bibliography

